

Sydney Girls High School 2022 Trial Higher School Certificate Examination

Mathematics Extension 1

General Instructions	• A reference sheet is	iours pen ed by NESA may be used
Total marks: 70	Section II – 60 marks (paAttempt Questions	1-10 nutes for this section ges 8-15)
Name:		THIS IS A TRIAL PAPER ONLY
Teacher:		It does not necessarily reflect the format or the content of the 2022 HSC Examination Paper in this subject.

Section 1 10 marks Attempt Questions 1-10 Use the Multiple-choice answer sheet for questions 1-10

1) Given $f(x) = \sqrt{x} - 3$, what are the domain and range of $y = f^{-1}(x)$?

A. $x \ge -3, y \ge 0$ B. $x \ge -3, y \ge -3$ C. $x \ge 0, y \ge 0$ D. $x \ge 0, y \ge -3$

2) What is the derivative of $f(x) = \tan^{-1}\left(\frac{1}{x}\right)$?

А.	$\frac{-1}{1+x^2}$
B.	$\frac{-x^2}{1+x^2}$
C.	$\frac{1}{1+x^2}$
D.	$\frac{x^2}{1+x^2}$

- 3) Terry is one of 5 candidates in an election. If there are 106 voters what is the minimum number of votes she could receive and still win?
 - A. 20
 B. 21
 C. 22
 D. 23

4) What is the solution set of the inequality $x(x^2 - 9) < x$?

A.
$$(-\sqrt{8}, 0) \cup (\sqrt{8}, \infty)$$

B. $(-\infty, -\sqrt{10}) \cup (0, \sqrt{10})$
C. $(-\infty, -\sqrt{8}) \cup (0, \sqrt{8})$
D. $(-\sqrt{10}, 0) \cup (\sqrt{10}, \infty)$

5) A curve in the Cartesian plane is defined parametrically by the equations $x = t^3 + t$ and $y = t^4 + 2t^2$.

The equation of the tangent to the curve at t = 1 is:

- A. y = 2xB. y = 8xC. y = 2x - 1D. y = 8x - 13
- 6) What is the component of the force F = a i + b j where *a* and *b* are non-zero real constants, in the direction of the vector w = i + j?

A.
$$\left(\frac{a+b}{2}\right)w$$

B. $\left(\frac{1}{a+b}\right)F$

C.
$$\left(\frac{a+b}{a^2+b^2}\right)F$$

D.
$$\left(\frac{a+b}{\sqrt{2}}\right)w$$

7) Let *R* be the region between the graphs of y = 1 and $y = \sin x$ from x = 0 to $x = \frac{\pi}{2}$. The volume of the solid obtained by revolving *R* about the *x*-axis is given by:

A.

$$2\pi \int_{0}^{\frac{\pi}{2}} x \sin x \, dx$$
B.

$$\pi \int_{0}^{\frac{\pi}{2}} (1 - \sin x)^2 \, dx$$
C.

$$\pi \int_{0}^{\frac{\pi}{2}} \sin^2 x \, dx$$
D.

$$\pi \int_{0}^{\frac{\pi}{2}} (1 - \sin^2 x) \, dx$$

- 8) In how many different ways can three girls and three boys be seated on a bench for a photograph if the girls must all sit apart?
 - **A.** 72
 - **B.** 120
 - **C.** 144
 - **D.** 576

9) Given $\tan A - \tan B = \cot A - \cot B - 1 = m$, which of the following is the correct expression for $\tan(A - B)$ in terms of m.

A. $\frac{m(m+1)}{2m+1}$ B. m(m+1)C. $-\frac{m(m+1)}{2m+1}$ D. -m(m+1)

10) Given that x and y are both prime numbers and integers larger than 1, how many terms of the binomial expansion $(\sqrt{x} + \sqrt[5]{y})^{301}$ will be rational?

A. 151
B. 60
C. 31
D. 30

Section II 60 marks Attempt questions 11-14 Start each question on a NEW piece of paper

Question 11 (15 marks)

Use a new sheet of paper.

- (a) Let $\overrightarrow{OA} = 3i 5j$ and $\overrightarrow{OB} = 2i + 6j$.
 - (i)Find $|\overrightarrow{OA}|$.1(ii)Find \overrightarrow{AB} .1(iii)Find the size of $\angle AOB$, correct to the nearest degree.2
- (b) Find the value of the following integral, giving your answer in terms of π . 2

$$\int_{0}^{\frac{1}{3}} \frac{1}{\sqrt{4-9x^2}} \, dx$$

(c) A polynomial is given by $P(x) = x^3 + ax^2 - 6ax + b$. 3

Find the values of a and b given the following conditions.

- x = 2 is a root of the polynomial and
- the remainder is 2 when P(x) is divided by (x 1)

Question 11 continues on the following page

....

(d) (i) Given
$$t = \tan\left(\frac{\theta}{2}\right)$$
, show that:

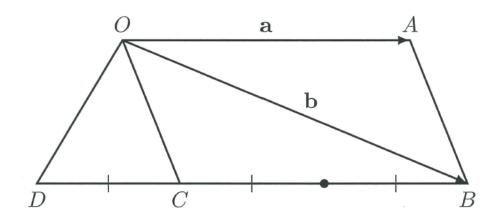
$$\sin\left(\frac{\theta}{2}\right) = \frac{t}{\sqrt{1+t^2}}$$

(ii) Hence solve the following equation for
$$\theta$$
, where $\theta \in [0, 2\pi]$. 3
 $\cos \theta - \sin \left(\frac{\theta}{2}\right) = 0$

2

Express your solutions in terms of π .

(e) In the diagram below, *OABC* is a parallelogram and *D*, *C* and *B* are collinear such that DC:CB = 1:2. Given $\overrightarrow{OA} = a$ and $\overrightarrow{OB} = b$, find an expression for \overrightarrow{AD} in terms of \underline{a} and \underline{b} .



Question 12 (15 marks) Use a new sheet of paper

(a) The rate at which a body warms in air is proportional to the difference between its temperature T and the constant temperature A of the surrounding air. This rate can be expressed using the differential equation:

$$\frac{dT}{dt} = k(T - A)$$

1

3

where t is the time in minutes and k is a constant.

- (i) Show that $T = A + Pe^{kt}$, where P is a constant, is a solution of the differential equation.
- (ii) At the time a cheesecake is removed from a fridge, it is 2°C.
 After 15 minutes, it has warmed to 10°C.
 Given the air temperature around the cheesecake is 25°C, find the temperature of the cheesecake after a further 15 minutes.
 Give your answer in degrees, correct to two decimal places.

(b)

- (i) Express $f(x) = \sqrt{3} \cos x \sin x$ in the form $R \cos(x + \alpha)$, where $0 < \alpha < \frac{\pi}{2}$.
- (ii) Sketch y = f(x) for 0 ≤ x ≤ 2π, showing clearly the
 location of all stationary points and the end-points.
 Your sketch should be at least one-third of a page.
- (iii) Hence, solve $\sqrt{3} \le f(x) \le 2$ for $0 \le x \le 2\pi$, expressing 1 your solution using values in terms of π , where necessary.

Question 12 continues on the following page

Question 12 (continued)

(c) Use the principle of mathematical induction to show that for all integers $n \ge 1$,

$$1^{2} + 3^{2} + 5^{2} + \dots + (2n-1)^{2} = \frac{4n^{3} - n}{3}$$

(d) Muckle Flugga Lighthouse is located on a small island and the lighthouse is located 3 km away from the main coastline. Assume the main coastline is a straight line.

Cooper is positioned at the point on the main coastline closest to the lighthouse.

If the light of the lighthouse revolves at 2 revolutions per minute, how fast is the beam of light moving along the coastline at a point 2 km away from Cooper? Express your answer in terms of π .

3

Question 13 (15 marks)

Use a new sheet of paper

(a) (i) Sketch the function
$$y = f(x)$$
 where $f(x) = 9x - x^3$. 2

(ii) Hence, sketch
$$|y| = f(x - 3)$$
. 2

(b) Use the substitution $u = \tan x$ to find the following integral:

$$\int \frac{\csc x}{\cos x} \, dx$$

(c) Find the coefficient of x^3 upon expansion of the following:

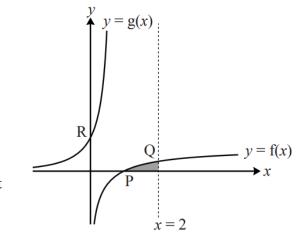
$$\left(1+\frac{2}{x^2}\right)^2 (2-x)^{10}$$

3

(d) The given diagram shows the curves

$$y = f(x)$$
 and $y = g(x)$ where:
 $f(x) = \ln\left(\frac{2x}{1+x}\right), \quad x > 0$
 $g(x) = \frac{e^x}{2 - e^x}, \quad x < \ln 2$

The curve y = f(x) crosses the x-axis at P(1,0), and the line x = 2 at Q.



2

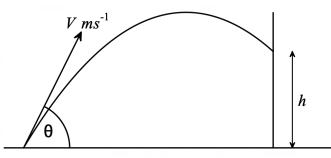
- (i) Determine the y -coordinate of the point Q. 1
- (ii) Find $f^{-1}(x)$, the inverse function of f(x). 1
- (iii) Show, using the substitution $u = 2 e^x$, that:

$$\int_{0}^{\ln\frac{4}{3}} g(x)dx = \ln\frac{3}{2}$$

(iv) Hence, find the area of the shaded region in the diagram, giving 2 your answer in the form $\ln \frac{a}{b}$ where a and b are integers.

Question 14 (15marks) Use a NEW sheet of paper

(a) A rocket is fired with a velocity $V \text{ ms}^{-1}$ at an angle θ to the horizontal from sea level and hits a cliff face as shown. Neglect air resistance and take $g = 10 \text{ m/s}^2$.



The position vector of the rocket, relative to the point from which it was fired is given by: $s(t) = 20ti + (20\sqrt{3}t - 5t^2)j$

where t is the time in seconds after the rocket was fired.

(i) The base of the cliff is 120 m from the point at which the rocket was fired. 2

Find the value of h, correct to the nearest metre.

(ii) Find the angle that the rocket makes <u>with the cliff</u> at the moment it strikes
2 the cliff.

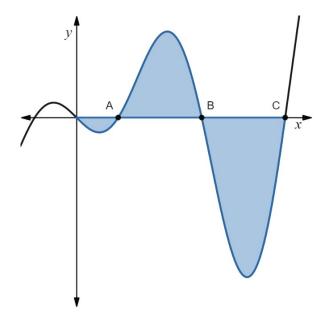
Give your answer correct to the nearest minute.

- (b) Consider the functions $y = -\frac{1}{2}\tan^{-1}(-2x)$ and $y = \cos^{-1}(2x)$.
 - (i) Sketch the function $y = \cos^{-1}(2x)$.
 - (ii) Find the coordinates of any points of intersection and provide allvalues correct to 3 significant figures.

Question 14 continues on the following page

Question 14 (continued)

- (c) The diagram below represents the graph of the function $y = \sin 5x \sin 6x$.
 - (i) Determine the exact coordinates of the point C.
 - (ii) Hence, calculate the volume of the solid formed when the shaded region is rotated by 360° about the *x* –axis.Give your answer correct to 2 decimal places.



- (d) The letters of the word DUMBWAITERS are arranged randomly.Find the probability that:
 - (iii)the word <u>WEIRD</u> appears in the arrangement so that the letters are both in order and all together.For example, the arrangement TUMB<u>WEIRD</u>AS.
 - (iv)the letters of the word <u>WEIRD</u> appear in the arrangement so that the letters are in order but not all together For example, the arrangement U<u>W</u>TM<u>E</u>AB<u>IRD</u>S.

End of paper

1

1

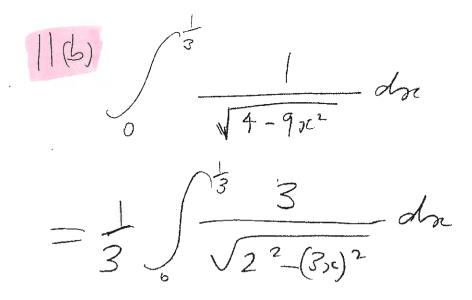
2

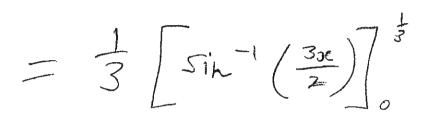
SGHS X1 Trial HSC 2022: SOLUTIONS

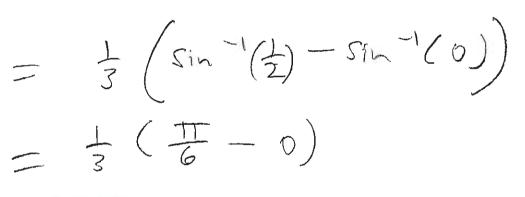
Q01 For f(x), the domain is $x \ge 0$ and the range is $y \ge -3$. A Hence, for $f^{-1}(x)$, the domain is $x \ge -3$ and the range is $y \ge 0$. $f'(x) = \frac{1}{1 + \left(\frac{1}{x}\right)^2} \times -x^{-2}$ Q02 Α $=\frac{1}{1+\frac{1}{x^2}}\times-\frac{1}{x^2}$ $\therefore f'(x) = -\frac{1}{x^2 + 1}$ $\frac{106}{5} = 21.2$ Q03 С : The minimum number of votes Terry can receive and still win is 22. $x(x^2 - 10) < 0$ Q04 В $x(x-\sqrt{10})(x+\sqrt{10}) < 0$ Using the graph on the right: $\sqrt{10}$ $-\sqrt{10}$ x $x < -\sqrt{10}$ or $0 < x < \sqrt{10}$ i.e. $(-\infty, -\sqrt{10}) \cup (0, \sqrt{10})$ $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$ Q05 С $=\frac{4t^3+4t}{3t^2+1}$ when t = 1, x = 2, y = 3 $m_T = \frac{4+4}{3+1}$ $m_T = 2$ Eqn of tangent is y - 3 = 2(x - 2)i.e. v = 2x - 1

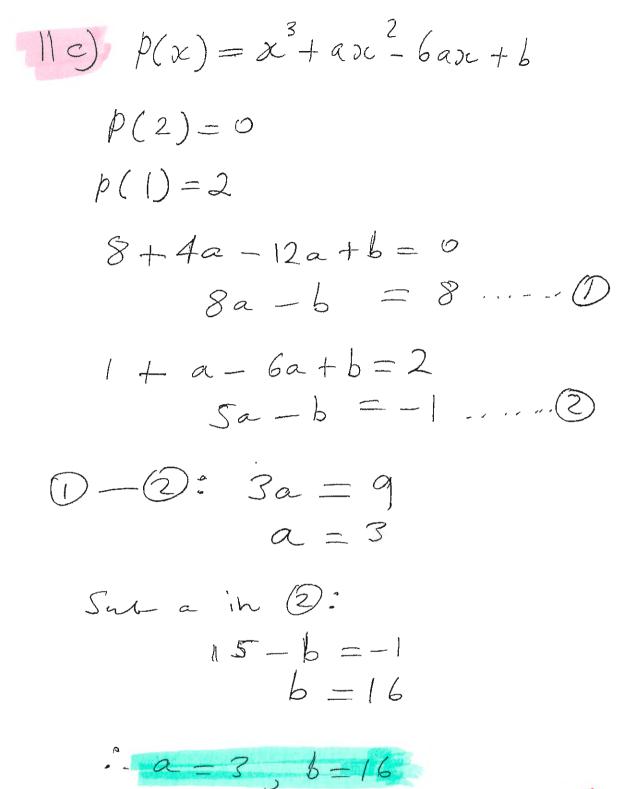
Q06 A
$$proj_{w}E = \frac{E \cdot w}{W \cdot W}$$
 \therefore $proj_{w}E = \frac{a + b}{2}w$
 $= \frac{a \times 1 + b \times 1}{1 \times 1 + 1 \times 1}w$
Q07 D $V = \pi \int_{0}^{\frac{\pi}{2}} 1^{2}dx - \pi \int_{0}^{\frac{\pi}{2}} (\sin x)^{2} dx$
 $\therefore V = \pi \int_{0}^{\frac{\pi}{2}} (1 - \sin^{2} x) dx$
Q08 C No. of ways to order the three boys = 3!
 $B_{-}B_{-}B_{-}$ No. of scating choices for the three girls = $4 \times 3 \times 2$
 \therefore Total no of ways for seating = $3! \times 24 = 144$
Q09 B $\tan A - \tan B = m$
 $\cot A - \cot B - 1 = m$
 $\frac{1}{\tan A} - \frac{1}{\tan B} = m + 1$
 $\frac{1}{\tan A} - \frac{1}{\tan B} = m + 1$
 $\frac{-m}{\tan A \tan B} = m + 1$
 $\frac{1}{\tan A} - \frac{1}{\tan B} = m + 1$
 $\frac{1}{\tan A} - \frac{1}{\tan B} = m + 1$
 $\frac{1}{\tan A} - \frac{1}{\tan B} = m + 1$
 $\frac{1}{\tan A} \tan B} = \frac{-m}{m + 1}$
 $\frac{1}{\tan A} \tan B} = \frac{1}{m + 1}$
 $\frac{1}{\tan A} \tan B} = \frac{1}{m + 1}$
 $\frac{1}{\tan B} \tan B} = \frac{1}{m + 1}$
 $\frac{1}{\tan B} \tan B} \tan B = \frac{1}{m + 1}$
 $\frac{1}{\tan B} \tan B} \tan B = \frac{1}{1}$
 $\frac{1}{1} \tan B} \tan B + \frac{1}{1} \tan B} \tan B + \frac{1}{1} \tan B} \tan B + \frac{1}{1}$

$$\begin{array}{c} 2022 - E \times t \cdot 1 \operatorname{Trial} \\ (2 | 1 | a) \\ B (2,6) \\ = \sqrt{3^2 + 5^2} \\ = \sqrt{3^4} \operatorname{Im} (h - 1) \\ = \sqrt{3^4} \operatorname{Im} (h - 1) \\ = -\sqrt{3^4} \operatorname{Im} (h - 1) \\ = \sqrt{3^4} \operatorname{Im} (h$$









(1) (i) $t = fan(\frac{2}{2})$

 $SI_{n}\left(\frac{0}{2}\right) = \frac{t}{\sqrt{1+t^{2}}}$

(ii) $\cos 0 = \frac{1-t^2}{1+t^2}$

 $\cos \phi = \sin \left(\frac{\phi}{2}\right) = 0$

 $\frac{1-t^2}{1+t^2} = \frac{t}{\sqrt{1+t^2}}$ $|-t^2 = \frac{t(1+t^2)}{(1+t^2)^2}$ $(1+t^2)^{\frac{1}{2}}$ 1-t2 = t (1+t2)= $(1-t^{2})^{2} = t^{2}(1+t^{2})$ $1 - 2t^2 + t^4 = t^2 + t^4$ 3×2 = 1 $0 \leq 0 \leq 2T$ A2= 2 $0 \leq \frac{\partial}{2} \leq T$ 大三士吉 $\tan\left(\frac{\Theta}{2}\right) = \pm \frac{1}{12} \qquad \frac{1}{12}$ 皇二王 丁二 $Q = \frac{1}{2} \int STT$

11e) AB = AO + OR = -a + b $\overrightarrow{AB} = \overrightarrow{AB} + \overrightarrow{BD}$ $=((k-a) + \frac{3}{2} \times -a)$ $= b - \frac{5}{2}a$ OR

OB = OB + BD $= b_{1} + - \frac{3}{2}a_{1}$ $\overrightarrow{AB} = \overrightarrow{A0} + \overrightarrow{00}$ $= -a + (b - \frac{3}{2}a)$ $= b - \frac{5}{2}a$

2

Question 12 (a) (i) $T = A + Pe^{kt}$ (1) $\frac{dT}{dt} = k P e^{kt}$ = k(T-A), since $Pe^{kt} = T-A$ from (1) .. (1) satisfies the DE. / <u>Comment</u>: Generally well done. There were a handful of students that were not successful with this question - it is recommanded to learn the above setting out. :. $k = \frac{1}{15} \ln \frac{15}{23}$ lii) A = 25 T = 25 + Pe^{kt} When t = 30, 30 k T = 25 - 23 e t=0 , T=2 = 15.22°((2dp) 🗸 $2 = 25 + Pe^{0}$:. - 13 = P $T = 25 - 23e^{kt}$ t= 15, T = 10 10 = 25 - 23e^{15 K} -15 = -23e $e^{15 \text{ K}} = \frac{15}{23}$ $15 K = \ln \frac{15}{23}$

(b)
(i)
$$\sqrt{3}$$
 Loss - sinx = R Los (x + A)
- R Los x Loss - R sinx sind
Runs = $\sqrt{3}$
Runs

(८)	Prove true for n=1
	LHS = 1^{2} = (RHS = $\frac{4(1)^{3} - 1}{3}$ = 1
	$RHS = \frac{4(1)^2 - 1}{3} = 1$
	. LHS = RHS
	: true for $n=1$ /
	Assume true for $n = k$
	ie. assume
	$ ^{2} + 3^{2} + 5^{2} + \cdots + (2k-1)^{2} = \frac{4k^{3} - k}{3}$
	_
	$\frac{Prove true for n = k+1}{1}$
	ie. RTP $1^{2} + 3^{2} + 5^{2} + \dots + (2\kappa+1)^{2} = \frac{4(\kappa+1)^{3} - (\kappa+1)}{3}$
	$1' + 3' + 5' + \dots + (2^{k+1}) = \frac{3}{3}$
	$LHS = \frac{4k^3 - k}{3} + (2k+1)^2 (by assumption)$
	$\frac{1}{1}$
	$= \frac{4k^{3}-\kappa+3(4k^{2}+4\kappa+1)}{3}$
	3
	$= \frac{4k^{3} + 12k^{1} + 12k + 4 - k - 1}{4}$
	3
	$= \frac{4(k^3 + 3k^2 + 3k + 1) - (k + 1)}{2}$
	$= \frac{4(k+1)^{3} - (k+1)}{3}$
	= RHS
	: true for n= k+1
	: true by induction for integers $n \ge 1$.
	Comment: Students who knew that $(k+1)^3 = k^3 + 3k^2 + 3k + 1$
	were generally the most successful.

(d) 3 (0, x, 3 must All be labelled)ĸ <u>db</u> = 2 revs/min dt = 471 rads/min $\tan\theta = \frac{\pi}{3}$ $\frac{dx}{dt} = \frac{d\theta}{dt} \times \frac{dx}{d\theta}$ $\frac{\theta = \tan^{-1} \frac{\chi}{3}}{\frac{d\theta}{d\pi} = \frac{\frac{1}{3}}{\frac{1+\frac{\chi^2}{9}}{\frac{\pi}{9}} = \frac{3}{9+\chi^2}}$ $= 4\pi \times \frac{9+\chi^2}{3}$ When x = 2, $\frac{dx}{dt} = 4\pi \times \frac{9+2^2}{2}$ $=\frac{52\pi}{3}$ km/min \checkmark <u>Comment</u>: Unly a handful of students were successful with this question. Students who able to correctly depict the situation with a <u>labelled</u> diagram were generally the most successful.

Q13 Ext 1 2022 Trial a) ij $y = 9x - x^3$ $= \chi (9 - \chi^{2})$ $= \chi (3 - \chi)(3 + \chi)$ NY ?n ...]] This greation was 6) u= tank poorl done Many students didn't know her to do it. du 5 sec2n du = sech du Sinx Cosx Cosx du $= \int \frac{\cos n}{\sin n} dn = 1$ cosn sech du

= { cotr sec²ndr = { _ sec'ndu $= \int \int du$ $= \ln|u| + c$ VV = In/tank/+C $C)\left(1+\frac{4}{\kappa^{2}}+\frac{4}{\kappa^{4}}\right)\left(\frac{10}{7}2^{7}(-\kappa)^{3}+C_{5}2^{5}(-\kappa)^{5}\right)$ $+ \frac{10}{3} 2^{3} (-\pi)^{7}$ $= \frac{10}{2} \left(-\kappa\right)^{3} + \frac{4}{\kappa^{2}} \left(\frac{10}{5} + \frac{5}{2}\left(-\kappa\right)^{5}\right) + \frac{4}{\chi^{4}} \left(\frac{10}{5} + \frac{3}{2}\left(-\kappa\right)^{7}\right)$ = -15360x 32256x 3840x = - 51456 x³ coefficient _51456 This question was very poorly dene. students didn't have clear setting out.

d) i) $y = ln\left(\frac{2n}{1+x}\right)$ = du $\chi = 2$ U=2-en $y = ln\left(\frac{4}{3}\right)$ $k = 0 \longrightarrow u = 2 - 1$ u = 1 $P(2, 1n \frac{4}{7})$ x=113 - u=2-e $ii') \quad y = \ln\left(\frac{2\kappa}{1+\kappa}\right)$ $\chi = ln\left(\frac{2y}{1+y}\right)$ $= 2 - \frac{4}{3}$ $= \frac{2}{3}$ ex = 29 1+9 $-\int \frac{2}{3} \frac{d\omega}{v}$ ex + ye = 2y $-\left[\ln \left| u \right| \right]^{\frac{1}{2}}$ x = 2y-ye $= - \left[\ln \left(\frac{2}{3} \right) - \ln \left(\frac{1}{3} \right) \right]$ ex = y(2-ex) y= e 2-02 $= -\ln(\frac{2}{3})$ $ln(\frac{2}{3})^{-1}$ iii) $u = 2 - e^{\chi}$ = 1, 3 du = - ex $\int_{-e^{\chi}}^{\ln\frac{4}{3}} \frac{1}{2-e^{\chi}} dx$ - j^{ln y} _e n 2-e dn

iv) Ar (11 4) x2 - Jay 2-et dy $= 2 \ln \frac{4}{3} - \left[\ln \frac{3}{2} \right]$ $= \ln \frac{16}{9} - \ln \frac{3}{2}$ $= \left[\wedge \left(\frac{16}{9} \right) \right]$ $= \ln \left(\frac{32}{27}\right) u^2$ This greation was hard for many students

V

Q 14 $s(t) = 20ti + (20\sqrt{3}t - 5t)j$ -ìa x = 20t $y = 20\sqrt{3}t$) - st² (2) from (D) $t = \frac{2c}{20}$ subs into 2 $\frac{20\sqrt{3} \times x - 5 \times x^{2}}{20}$ $\frac{20\sqrt{3} \times x - 5 \times x^{2}}{400}$ 4 $V_3 x - \frac{2}{80}$ 4 = When 2c = $y = \sqrt{3} \times 120 - \frac{120}{80}$ 28 m ii) when it hits the cliff - <u>120</u> 20 = 6 Sec 20t $y = 20\sqrt{3}t - 5t^{2}$ 20m/s $\dot{y} = 20\sqrt{3} - 10t/$ 2C ż $\dot{y} = 20\sqrt{3}$ t=6:25.36 m/s 20m/s -25.36 m/s 20 -25.36 -fan 0 = 6 Note: To find the angle, A = 38°16'the horizontal Vel and Vertical Vel must be calculated (Not horizontal and vertical dista iíer°

Q14 COS 22 y =b) $\leq 2x \leq 1$ $y \leq \pi$ O \leq 7 TC/2 / \rightarrow_{χ} .0 Solve $y = -\frac{1}{2} + \frac{1}{2} + \frac{1}{2} - \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1$ ii) $\cos^{2}(2\pi) = -\frac{1}{2} \tan^{2}(-2\pi)$ $(05(2x)) = \frac{1}{2} + \frac{1$ = +an'(2x)Lun for both sides 2 (05 (2 2) Insert +an 2 cos(2x) = +an (+an(2x)) (x)tan 2A = 2tan A Let A = cos COSA $+anA = \sqrt{1-4\chi^2}$ 2x * 2x VI-4x2 22 $\frac{\left(1-4\chi^2\right)}{4\tau^2}$

 $\frac{4x}{8x^2-1} = 2x$ $\frac{2\sqrt{1-4x^2}}{2\sqrt{1-4x^2}} = 8x^2 - 1$ $4(1-4x^2) = 64x^4 - 16x^2 + 1$ $\frac{4 - 16x^{2}}{64x^{4}} = \frac{64x^{4} - 16x^{2} + 1}{64x^{4}}$ $\frac{64x^{4}}{7x} = \frac{3}{64}$ $x = \pm \sqrt{\frac{3}{64}}$ $x = 0.465 = -7 \quad y = 0.375$ At x = -0.465 (two fins do not intersect) Point of intersection: (0.465, 0.375) i) $-\frac{y = 5x}{y = \sin 5x - \sinh 6x}$ At $C_i y = 0$ Sin $5x - \sin 6x = 0$ Use: $Sin(A-B) - Sin(A+B) = -2\cos A \cdot Sin B$ $\sin 5\pi - \sinh 6\pi = -2\cos \frac{11\pi}{2} \cdot \sinh \frac{\pi}{2}$ $\frac{\partial p}{2} - 2\cos \frac{\pi x}{2} \cdot \sin \frac{x}{2} = 0$ $-\frac{\cos \frac{11z}{2} = 0}{2} = \frac{\pi}{11} + \frac{3\pi}{11} + \frac{5\pi}{11} + \frac{5\pi$

Arrange the Sal in order $= 0, \frac{7c}{11}, \frac{3\pi}{11}, \frac{5\pi}{11}, \frac{5\pi}{11}$ paint C, the 4th solution $\frac{2}{l} = \frac{5\pi}{ll} \quad \text{at } C$ $\left(\frac{5\pi}{1},0\right)$ $=\pi \int_{0}^{\frac{5\pi}{10}} (\sin 5x - \sin 6x)^2 dx$ $\frac{\pi \int_{0}^{5\pi/11} \sqrt{Sin^{2}5x + Sin^{2}6x - 2Sin^{5}x.Sin^{6}x}dx}{Sin^{2}A - \frac{1}{2}(1 - \cos 2A)}$ $Sin^{2} 5 x = \frac{1}{2} (1 - \cos x)$ $Sin^{2}62c = \frac{1}{2}(1 - \cos(2x))$ $-2 \operatorname{sih} \operatorname{sx}$. $\operatorname{sih} \operatorname{6x} = -2 \frac{1}{2} (\cos \varepsilon x) - \cos \pi x$ $\frac{\left(1 - \cos(10x) + \frac{1}{2} - \frac{\cos(12x)}{2} - \cos x + \cos 112\right)}{2}$ $\frac{-}{20} = \frac{\sin(10x) - \sin(12x)}{24} = \sin x + \frac{\sin(1x)}{11}$

Q14 $V = \pi \frac{5\pi}{11} - \frac{1}{20} \sin(\frac{50\pi}{11}) - \frac{1}{24} \sin(\frac{60\pi}{11}) - \frac{1}{510} \sin(\frac{50\pi}{11}) - \frac{1}{11} \sin(\frac{5\pi}{11}) - \frac{1}{1$ V _ 1.35 Cubic units WEIRD $\frac{7!}{11!} = \frac{1}{7920}$ ii RDP W, E, I = 6 × 7 × 8 × 9 × 10 × 11 1st 2nd 3rd Letter Letter Letter 1st WEIRD IN ORDER But Not All Together) = All possible of WEIRD In order - WEIRD in order and together. $\frac{6 \times 7 \times 8 \times 9 \times 10 \times 11}{11} = \frac{7!}{11!}$ 1584